
THE ERDŐS–GINZBURG–ZIV THEOREM

STEVE FAN

Abstract. The Erdős–Ginzburg–Ziv theorem in additive number theory states that if
(G,+, 0) is a finite abelian group of order n ≥ 1 and if A is a sequence of elements in G of
length 2n− 1, then A contains a subsequence B of length n such that

∑
b∈B b = 0. In this

short note we shall present a proof of this theorem using the polynomial method.

1. Introduction

Throughout this note, we shall always denote by + the binary operation on a finite abelian
group. Our goal is to prove the following result of Erdős, Ginzburg and Ziv [2].

Theorem 1.1. Let G be a finite abelian group with |G| = n. Then any sequence A of
elements in G of length 2n− 1 contains a subsequence B of length n such that

∑
b∈B b = 0.

Let us begin by proving the following lemma.

Lemma 1.2. Let k and l be positive integers. Let G1 and G2 be finite abelian groups with
|G1| = k and |G2| = l. Suppose that Theorem 1.1 holds for G1 and G2. Then Theorem 1.1
also holds for G = G1 ⊕G2.

Proof. Let A be a sequence of elements in G of length 2kl − 1. By assumption, there exist

(x
(1)
1 , y

(1)
1 ), ..., (x

(1)
k , y

(1)
k ) ∈ A such that

∑k
i=1 x

(1)
i = 0. Let A1 be the subsequence obtained

from A by discarding (x
(1)
1 , y

(1)
1 ), ..., (x

(1)
k , y

(1)
k ). If l = 1, then

k∑
i=1

(x
(1)
i , y

(1)
i ) =

(
k∑
i=1

x
(1)
i ,

k∑
i=1

y
(1)
i

)
= (0, 0).

If l > 1, then the length of A1 is (2l − 1)k − 1 > 2k − 1. It follows that there exist

(x
(2)
1 , y

(2)
1 ), ..., (x

(2)
k , y

(2)
k ) ∈ A1 such that

∑k
i=1 x

(2)
i = 0. In general, we obtain by iterating this

procedure a rearranged subsequence {(x(j)i , y
(j)
i )} ofA with 1 ≤ i ≤ k and 1 ≤ j ≤ 2l−1, such

that
∑k

i=1 x
(j)
i = 0 for all 1 ≤ j ≤ 2l−1. Among the elements

∑k
i=1 y

(1)
i , ...,

∑k
i=1 y

(2l−1)
i ∈ G2,

we can find 1 ≤ j1 < ... < jl ≤ 2l − 1 such that
l∑

r=1

k∑
i=1

y
(jr)
i = 0.

It follows that
l∑

r=1

k∑
i=1

(x
(jr)
i , y

(jr)
i ) =

(
l∑

r=1

k∑
i=1

x
(jr)
i ,

l∑
r=1

k∑
i=1

y
(jr)
i

)
= (0, 0).

This completes the proof. �

By a similar argument one can prove the following result.

1



2 STEVE FAN

Lemma 1.3. Let k and l be positive integers. Suppose that Theorem 1.1 holds for Z/kZ and
Z/lZ. Then Theorem 1.1 also holds for Z/klZ.

Proof. Let A be a sequence of integers of length 2kl − 1. As in the proof of Lemma 1.2,

we can find a rearranged subsequence {a(j)i } of A with 1 ≤ i ≤ k and 1 ≤ j ≤ 2l − 1,

such that
∑k

i=1 a
(j)
i ≡ 0 (mod k) for all 1 ≤ j ≤ 2l − 1. Let

∑k
i=1 a

(j)
i = bjk for every

1 ≤ j ≤ 2l − 1, where bj ∈ Z. Among the integers b1, ..., b2l−1, there exist positive integers

1 ≤ j1 < ... < jl ≤ 2l − 1 such that
∑l

r=1 bjr ≡ 0 (mod l). Thus we have

l∑
r=1

k∑
i=1

a
(jr)
i = k

l∑
r=1

bjr ≡ 0 (mod kl).

This finishes the proof of the lemma. �

Let G be a finite abelian group. By the fundamental theorem of finite abelian groups we
see that

G '
r⊕
i=1

Z/diZ

with positive integers d1 | d2 | ... | dr. In view of Lemmas 1.2 and 1.3, we will be able to
finish the proof of Theorem 1.1 if we can prove the following special case of it.

Proposition 1.4. Let p be an arbitrary prime. Then any sequence A of elements in Z/pZ
of length 2p− 1 contains a subsequence B of length p such that

∑
b∈B b = 0.

It is not hard to see that Theorem 1.1 is best possible. Indeed, it suffices to consider the
case G = Z/nZ with n > 1. Then the sequence A = {ai}2n−2i=1 with a1 = ... = an−1 = 0 and
an = ... = a2n−2 = 1 contains no subsequence B of length n such that

∑
b∈B b = 0.

There are many proofs of Proposition 1.4. Here we shall follow [1] to present a proof using
the polynomial method, or more specifically, the combinatorial Nullstellensatz developed by
Alon, Nathanson and Ruzsa. The primary purpose of selecting this proof over the others
is to showcase the power and beauty of the polynomial method which has many interesting
applications in combinatorics, graph theory, additive number theory, transcendental number
theory (e.g. auxiliary polynomials), algebraic geometry, incidence geometry and so forth.

2. The Combinatorial Nullstellensatz

In this section, we shall introduce the ingredients of the polynomial method that we need
for the proof of Proposition 1.4. The key results are two theorems which Alon [1] calls
Combinatorial Nullstellensatz due to their close connection to Hilbert’s Nullstellensatz. To
derive these two theorems, we need the following lemma [1, Lemma 2.1].

Lemma 2.1. Let R be a domain with identity 1. Suppose that P ∈ R[x1, ..., xn] is a poly-
nomial with the property that for each 1 ≤ i ≤ n, the degree of P as a polynomial in xi
is at most di, where each di is a non-negative integer. Let S1, ..., Sn ⊆ R be subsets of R
with |Si| > di for all 1 ≤ i ≤ n, and let S := S1 × ... × Sn. If P vanishes on S, then P is
identically zero.
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Proof. We induct on n. For n = 1, we see that P is a polynomial of one variable of degree
at most d1 that has at least |S1| > d1 zeros. Thus P ≡ 0. Suppose that the lemma is true
for n− 1, where n ≥ 2 is a positive integer. Write

P (x1, ..., xn) =
dn∑
k=0

Pk(x1, ..., xn−1)x
k
n,

where the degree of each Pk(x1, ..., xn−1) ∈ R[x1, ..., xn−1] as a polynomial in xi is at most
di for all 1 ≤ i ≤ n − 1. For every fixed (s1, ..., sn−1) ∈ S1 × ... × Sn−1, the polynomial
P (s1, ..., sn−1, xn) vanishes on Sn. By the base case, we have P (s1, ..., sn−1, xn) ≡ 0. It
follows that Pk(s1, ..., sn−1) = 0 for all 0 ≤ k ≤ dn. Hence each Pk vanishes on S1× ...×Sn−1.
By induction, we have Pk(x1, ..., xn−1) ≡ 0 for all 0 ≤ k ≤ dn. This implies that P ≡ 0. �

We are now ready to prove the first part of Alon’s combinatorial Nullstellensatz [1, The-
orem 1.1].

Theorem 2.2. Let F be a field and let S1, ..., Sn ⊆ F be nonempty subsets of F . Put
S := S1 × ...× Sn and let f ∈ F [x1, ..., xn] be a polynomial which vanishes on S. Define

gi(x1, ..., xn) :=
∏
s∈Si

(xi − s) ∈ F [x1, ..., xn] (1)

for each 1 ≤ i ≤ n. Then there exist polynomials h1, ..., hn ∈ F [x1, ..., xn] with deg hi ≤
deg f − deg gi for all 1 ≤ i ≤ n such that f =

∑n
i=1 higi.

Proof. Let |Si| := di + 1 for all 1 ≤ i ≤ n, where di ≥ 0. Let I ⊆ F [x1, ..., xn] be the ideal
generated by g1, ..., gn and let f̄ be the reduction of f modulo I. Note that

gi(x1, ..., xn) = xdi+1
i + Pi(xi)

for some polynomial Pi ∈ F [xi] with degPi ≤ di. It follows that for each 1 ≤ i ≤ n,
the degree of f̄ as a polynomial in xi is at most di. Moreover, there exist polynomials
h1, ..., hn ∈ F [x1, ..., xn] such that

f(x1, ..., xn) = f̄(x1, ..., xn) +
n∑
i=1

hi(x1, ..., xn)gi(x1, ..., xn).

Since deg(higi) ≤ deg f , we deduce that deg hi ≤ deg f − deg gi. Since f, g1, ..., gn all vanish
on S, we have that f̄ also vanishes on S. From Theorem 2.2 it follows that f̄ ≡ 0. This
shows that f =

∑n
i=1 higi. �

The following theorem, which constitutes the second part of the combinatorial Nullstel-
lensatz [1, Theorem 1.2], is an immediate corollary of Theorem 2.2.

Theorem 2.3. Let F be a field and let S1, ..., Sn ⊆ F be subsets of F with |Si| > di for
all 1 ≤ i ≤ n, where each di is a non-negative integer. Put S := S1 × ... × Sn and let
f ∈ F [x1, ..., xn] be a polynomial of degree d :=

∑n
i=1 di such that the coefficient of

∏n
i=1 x

di
i

in f is nonzero. Then f does not vanish at all points of S.

Proof. Without loss of generality, we may assume that |Si| = di + 1 for all 1 ≤ i ≤ n.
Assume to the contrary that f vanishes on S. By Theorem 2.2, there exist polynomials
h1, ..., hn ∈ F [x1, ..., xn] with deg hi ≤ d − di − 1 for all 1 ≤ i ≤ n such that f =

∑n
i=1 higi,

where gi is defined as in (1). By assumption, the coefficient of
∏n

i=1 x
di
i in f is nonzero.
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Thus there exists 1 ≤ j ≤ n such that the coefficient of
∏n

i=1 x
di
i in hjgj is nonzero. But

hjgj = x
dj+1
j hj +hjPj and deg(hjPj) ≤ deg hj +dj ≤ d−1. Hence the term

∏n
i=1 x

di
i appears

in x
dj+1
j hj. This is clearly impossible. �

An interesting application of Theorem 2.3 is the following result known as the permanent
lemma [1, Lemma 8.1].

Lemma 2.4. Let F be a field and let A = (aij) ∈Mn(F ) be an n× n matrix with

per(A) :=
∑
σ

n∏
i=1

aiσ(i) 6= 0,

where σ ranges over all permutations on {1, ..., n}. Let S1, ..., Sn ⊆ F be subsets of F with
|Si| ≥ 2 for all 1 ≤ i ≤ n. Then for any b = (b1, ..., bn) ∈ F n, there exists u = (u1, ..., un) ∈
S1 × ...× Sn such that if v = uA = (v1, ..., vn), then vj 6= bj for all 1 ≤ j ≤ n.

Proof. Consider the polynomial

P (x1, ..., xn) :=
n∏
j=1

(
n∑
i=1

aijxi − bj

)
∈ F [x1, ..., xn].

Note that degP = n and per(A) 6= 0 is the coefficient of the term
∏n

j=1 xj in P . It follows

by Theorem 2.3 that there exists u = (u1, ..., un) ∈ S1 × ...× Sn such that P (u1, ..., un) 6= 0.
This implies that vj =

∑n
i=1 aijui 6= bj for all 1 ≤ j ≤ n. �

Note that the conclusion of Lemma 2.4 is still true if we replace the condition per(A) 6= 0
with detA 6= 0. Indeed, we may suppose that |Si| = 2 for all 1 ≤ i ≤ n. Let b = (b1, ..., bn) ∈
F n be an arbitrary vector and let T := {uA : u ∈ S}, where S := S1 × ... × Sn. Since A
is invertible, we have |T | = 2n. On the other hand, it follows from the inclusion-exclusion
principle that

|{v = (v1, ..., vn) ∈ T : vi = bi for some 1 ≤ i ≤ n}| ≤
n∑
k=1

(−1)k−1
(
n

k

)
2n−k = 2n − 1.

Thus there exists v = (v1, ..., vn) ∈ T such that vi 6= bi for all 1 ≤ i ≤ n. Note also that in
the case F ⊆ R, the triangle inequality implies that any invertible matrix A ∈ Mn(F ) with
non-negative entries must have nonzero permanent.

3. Proof of Proposition 1.4

Now it is an easy matter to derive Proposition 1.4 from Lemma 2.4. Let p be any prime
and take G = Z/pZ. Let π : Z → G be the natural projection. Let A = {ai}2p−1i=1 be any
sequence of elements in F of length 2p − 1. For every 1 ≤ i ≤ 2p − 1, let a∗i ∈ Z be the
least non-negative integer such that π(a∗i ) = ai. Without loss of generality, we may suppose
that 0 ≤ a∗1 ≤ ... ≤ a∗2p−1 < p. If there exists 1 ≤ i ≤ p − 1 for which a∗i = a∗i+p−1, then
ai = ai+1 = ... = ai+p−1 and thus we have

i+p−1∑
j=i

aj = pai = 0
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in G. Otherwise, let A ∈ Mp−1(G) be the (p − 1) × (p − 1) matrix all of whose entries are
1. Then per(A) = (p − 1)! 6= 0. Let Si := {ai, ai+p−1} for all 1 ≤ i ≤ p − 1. Then |Si| = 2
for all 1 ≤ i ≤ p− 1. By Lemma 2.4, for any b = (b1, ..., bp−1) ∈ Gp−1 with b1, ..., bp−1 being
distinct elements in G \ {−a2p−1} there exists u = (u1, ..., up−1) ∈ S1 × ... × Sp−1 such that
if v = uA = (v1, ..., vp−1), then

vj =

p−1∑
i=1

ui 6= bj

for all 1 ≤ j ≤ p− 1. Hence we must have

p−1∑
i=1

ui = −a2p−1.

This completes the proof of Proposition 1.4.

4. Concluding Remarks

The original proof of Proposition 1.4 is completely elementary. It relies on the following
lemma [2] which can be proved by induction.

Lemma 4.1. Let p > 2 be an odd prime and A a sequence of elements of Z/pZ of length
2 ≤ s < p. Suppose further that not all elements of A are equal. Then the set{∑

a∈A

εaa : each εa ∈ {0, 1}

}
⊆ Z/pZ

has cardinality at least s+ 1.

We now describe how Proposition 1.4 follows from Lemma 4.1. The case p = 2 is trivial.
Let p > 2 be an odd prime and let A = {ai}2p−1i=1 be any sequence of elements in Z/pZ
of length 2p − 1. As in Section 3, we may suppose that 0 ≤ a∗1 ≤ ... ≤ a∗2p−1 < p and
that ai 6= ai+p−1 for all 1 ≤ i ≤ p. If

∑p
i=1 ai = 0, then we are done. Suppose now that∑p

i=1 ai 6= 0. Let bi := ai+p − ai+1 6= 0 for each 1 ≤ i ≤ p − 1. If b1 = ... = bp−1 = b, then
there exists a positive integer 1 ≤ k ≤ p− 1 such that

k = −b−1
p∑
i=1

ai

holds in Z/pZ. Taking ε1 = ... = εk = 1 and εk+1 = ... = εp = 0 we find that

p∑
i=1

ai +

p−1∑
i=1

εibi = b

(
b−1

p∑
i=1

ai + k

)
= 0.

Otherwise, Lemma 4.1 applied to the sequence {bi}p−1i=1 implies that there exist ε1, ..., εp−1 ∈
{0, 1} such that

p−1∑
i=1

εibi = −
p∑
i=1

ai.
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In either case, we conclude that there exist ε1, ..., εp−1 ∈ {0, 1} such that

p∑
i=1

ai +

p−1∑
i=1

εibi = 0.

After cancellation, the left-hand side is a sum of precisely p elements of A with distinct
indices. This proves Proposition 1.4.

There is also a 2-dimensional counterpart of Theorem 1.1 due to Reiher [3] which states
that any set S of 4n− 3 planar lattice points contains a subset S ′ of cardinality n such that
the centroid of all points from S ′ is also a lattice point. This was conjectured in 1983 by
Kemnitz and was proved in 2003 by Reiher using the following theorem of Chevalley and
Warning (see [4]).

Theorem 4.2. Let Fq be a finite field and let P1, ..., Pm ∈ Fq[x1, ..., xn] be m polynomials
such that

∑m
i=1 degPi < n. If P1, ..., Pm share a common zero, then P1, ..., Pm have another

common zero.

As a matter of fact, the Chevalley-Warning theorem can be derived easily from Theorem
2.3 (see [1, Theorem 3.1]). More generally, let f(n, d) denote the least positive integer f
such that any set S of f lattice points in Rd contains a subset S ′ of cardinality n whose
centroid is also a lattice point. Then f(n, 1) = 2n− 1 and f(n, 2) = 4n− 3. The problem of
determining f(n, d) for d ≥ 3 is still open.
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