THE ERDOS-GINZBURG-ZIV THEOREM
STEVE FAN

ABSTRACT. The Erd6s—Ginzburg-Ziv theorem in additive number theory states that if
(G,+,0) is a finite abelian group of order n > 1 and if A is a sequence of elements in G of
length 2n — 1, then A contains a subsequence B of length n such that ), ;b = 0. In this
short note we shall present a proof of this theorem using the polynomial method.

1. INTRODUCTION

Throughout this note, we shall always denote by + the binary operation on a finite abelian
group. Our goal is to prove the following result of Erdds, Ginzburg and Ziv [2].

Theorem 1.1. Let G be a finite abelian group with |G| = n. Then any sequence A of
elements in G of length 2n — 1 contains a subsequence B of length n such that Y, b= 0.

Let us begin by proving the following lemma.

Lemma 1.2. Let k and | be positive integers. Let Gy and Go be finite abelian groups with
|G1| = k and |Gs| = . Suppose that Theorem 1.1 holds for Gy and Go. Then Theorem 1.1
also holds for G = G1 ® Gs.

Proof. Let A be a sequence of elements in G of length 2kl — 1. By assumption, there exist
(xgl),ygl)), (:c,(C ), y,(:)) € A such that 325 = 0. Let A; be the subsequence obtained
from A by discarding (23", "), . (3:; ),yk ) If [ =1, then

k k k
> @,y (233517 yfl>
i=1
If I > 1, then the 1ength of Ay is (21 — 1)k —1 > 2k — 1. It follows that there exist
(x?), yEQ)), (x,{C )y i ') € Ay such that Z -1 x = 0. In general, we obtain by iterating this
procedure a rearranged subsequence {(z" T, ,yl )} of Awith1 <i < kand 1 < j <2[—1, such
that S35, 29 = 0forall 1 < j < 21—1. Among the elements S y S y P e @y,
we can find 1 < j; < ... < j; <2l — 1 such that

l k
ZZ%@) —0

r=1 i=1
It follows that

l k l k l k
>3l - (DL 3w ) < 00,
r=1 i=1 r=1 i=1 r=1 i=1

This completes the proof. 0

By a similar argument one can prove the following result.
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Lemma 1.3. Let k and [ be positive integers. Suppose that Theorem 1.1 holds for Z/kZ and
ZJIZ. Then Theorem 1.1 also holds for Z/KIZ.

Proof. Let A be a sequence of integers of length 2kl — 1. As in the proof of Lemma 1.2,
we can find a rearranged subsequence {a; ])} of Awith 1 <i <k and 1 <5 <2 -1,
such that S°F ot = (mod k) for all 1 < j < 20l — 1. Let ZZ 1 Z = bjk for every

zlz

1 <j <2l—1, where b; € Z. Among the integers b, ..., by_;, there exist posmve integers
1<j; <..<j <2l —1such that 3>'_ b; =0 (mod [). Thus we have

ZZ al") _k:Zb7 =0 (mod k).

This finishes the proof of the lemma. O

Let G be a finite abelian group. By the fundamental theorem of finite abelian groups we
see that

=1

with positive integers d; | dy | ... | d,. In view of Lemmas 1.2 and 1.3, we will be able to
finish the proof of Theorem 1.1 if we can prove the following special case of it.

Proposition 1.4. Let p be an arbitrary prime. Then any sequence A of elements in Z/pZ
of length 2p — 1 contains a subsequence B of length p such that ), zb = 0.

It is not hard to see that Theorem 1.1 is best possible. Indeed, it suffices to consider the
case G = Z/nZ with n > 1. Then the sequence A = {a;}2";% with a; = ... = a,,_; = 0 and
ap = ... = G9,_o = 1 contains no subsequence B of length n such that ), .zb = 0.

There are many proofs of Proposition 1.4. Here we shall follow [1] to present a proof using
the polynomial method, or more specifically, the combinatorial Nullstellensatz developed by
Alon, Nathanson and Ruzsa. The primary purpose of selecting this proof over the others
is to showcase the power and beauty of the polynomial method which has many interesting
applications in combinatorics, graph theory, additive number theory, transcendental number
theory (e.g. auxiliary polynomials), algebraic geometry, incidence geometry and so forth.

2. THE COMBINATORIAL NULLSTELLENSATZ

In this section, we shall introduce the ingredients of the polynomial method that we need
for the proof of Proposition 1.4. The key results are two theorems which Alon [1] calls
Combinatorial Nullstellensatz due to their close connection to Hilbert’s Nullstellensatz. To
derive these two theorems, we need the following lemma [1, Lemma 2.1].

Lemma 2.1. Let R be a domain with identity 1. Suppose that P € Rlxy,...,x,] is a poly-
nomaal with the property that for each 1 < i < n, the degree of P as a polynomial in x;
1s at most d;, where each d; is a non-negative integer. Let Si,...,S, C R be subsets of R
with |S;| > d; for all 1 < i <n, and let S := S; X ... x S,,. If P vanishes on S, then P is
tdentically zero.
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Proof. We induct on n. For n = 1, we see that P is a polynomial of one variable of degree
at most d; that has at least |S;| > dy zeros. Thus P = 0. Suppose that the lemma is true
for n — 1, where n > 2 is a positive integer. Write

k-
P(zy,...,x E Pi(z1, .oy xp_q))

where the degree of each Py(z1,...,7, 1) € R[ml, <y Tp_1] as a polynomial in z; is at most
d; for all 1 < i < n —1. For every fixed (si,...,8,-1) € S1 X ... X S,_1, the polynomial
P(s1,...,8p—1,2,) vanishes on S,. By the base case, we have P(si,....,8,_1,7,) = 0. It
follows that Py(sy,...,8,-1) = 0 for all 0 < k < d,,. Hence each P, vanishes on Sy X ... X S, _;.
By induction, we have Py(xy,...,2,1) =0 for all 0 < k < d,,. This implies that P =0. O

We are now ready to prove the first part of Alon’s combinatorial Nullstellensatz [1, The-
orem 1.1].

Theorem 2.2. Let F' be a field and let Si,..., S, C F be nonempty subsets of F. Put
S:=S51 X...x S, and let f € Flzy,...,x,] be a polynomial which vanishes on S. Define

gi(x1, .y ) 1= H(:)si—s) € Flxy, ..., x,)] (1)
SES;
for each 1 < i < n. Then there exist polynomials hy,...,h, € Flzy,...,x,] with degh; <
deg f —degg; for all 1 <i <n such that f =5 | h;g;.

Proof. Let [S;| := d; + 1 for all 1 <4 < n, where d; > 0. Let I C F[zy,...,z,] be the ideal
generated by g1, ..., g, and let f be the reduction of f modulo I. Note that

gi($17 ey xn) - x?i+1 + ]DZ('T2>
for some polynomial P; € Flx;] with deg P; < d;. It follows that for each 1 < i < n,

the degree of f as a polynomial in x; is at most d;. Moreover, there exist polynomials
hi,...;h, € Flxq,...,x,] such that

f(zy, ..., m) = f(og,..., 2 +Zh X1y eeny X)) Gi(T1, ey Tp).

Since deg(h;g;) < deg f, we deduce that deg h; < deg f — deg g;. Since f, g1, ..., g, all vanish
on S, we have that f also vanishes on S. From Theorem 2.2 it follows that f = 0. This
shows that f =" h;g. O

The following theorem, which constitutes the second part of the combinatorial Nullstel-
lensatz [1, Theorem 1.2}, is an immediate corollary of Theorem 2.2.

Theorem 2.3. Let F' be a field and let Sy, ..., S, C F be subsets of F' with |S;| > d; for
all 1 < 1 < n, where each d; is a non-negative integer. Put S = Sy X ... x S, and let
f € Flxy,...,z,] be a polynomial of degree d := ", d; such that the coefficient of ]
i f is nonzero. Then f does not vanish at all pomts of S.

zlz

Proof. Without loss of generality, we may assume that |S;| = d; + 1 for all 1 < i < n.
Assume to the contrary that f vanishes on S. By Theorem 2.2, there exist polynomials
hi,....;hn € Flzy,...,x,) with degh; < d —d; — 1 for all 1 <4 <mn such that f =" | h;g,

where g; is defined as in (1). By assumption, the coefficient of [];_, % in f is nonzero.
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Thus there exists 1 < j < n such that the coefficient of []}_, 24 in hjg; is nonzero. But
hig; = xjj+1hj +h;Pj and deg(h; P;) < degh;j+d; < d—1. Hence the term []I_, 2 appears

in x;lj +1hj. This is clearly impossible. O

An interesting application of Theorem 2.3 is the following result known as the permanent
lemma [1, Lemma 8.1].

Lemma 2.4. Let F' be a field and let A = (a;j) € M,(F) be an n x n matriz with

per(A) = Z H Qio(i) 7 0,

o =1
where o ranges over all permutations on {1,...,n}. Let S, ..., S, C F be subsets of F' with
|Si| > 2 for all 1 <i <n. Then for any b = (by,...,b,) € F", there exists u = (U1, ..., u,) €
S1 X ... X Sy, such that if v =uA = (v1,...,v,), then v; # b; for all1 < j <n.

Proof. Consider the polynomial

P(Q?l, 71‘n) = H (Z Qi T — bj> € F[.Tl, ,l’n]
j=1 \i=1
Note that deg P = n and per(A) # 0 is the coefficient of the term H;;l x; in P. It follows

by Theorem 2.3 that there exists u = (uq, ..., u,) € S; X ... X S, such that P(uy,...,u,) # 0.
This implies that v; = > " | a;;u; # b; for all 1 < j < n. O

Note that the conclusion of Lemma 2.4 is still true if we replace the condition per(A) # 0
with det A # 0. Indeed, we may suppose that |S;| =2 forall 1 <i <n. Let b = (by,...,b,) €
F™ be an arbitrary vector and let 7' := {uA: u € S}, where S := S} x ... x S,,. Since A
is invertible, we have |T| = 2". On the other hand, it follows from the inclusion-exclusion
principle that

2 n
Hv = (v1,...,0,) € T: v; = b; for some 1 <i <n} < Z(—l)k_l(k) onk —on 1,
k=1
Thus there exists v = (vy,...,v,) € T such that v; # b; for all 1 < i < n. Note also that in
the case F' C R, the triangle inequality implies that any invertible matrix A € M, (F) with
non-negative entries must have nonzero permanent.

3. PROOF OF PROPOSITION 1.4

Now it is an easy matter to derive Proposition 1.4 from Lemma 2.4. Let p be any prime
and take G = Z/pZ. Let m: Z — G be the natural projection. Let A = {a;}?*;' be any
sequence of elements in F' of length 2p — 1. For every 1 < ¢ < 2p — 1, let a] € Z be the
least non-negative integer such that m(a}) = a;. Without loss of generality, we may suppose
that 0 < a] < ... < a3, ; <p. If there exists 1 < ¢ < p — 1 for which af = a7, ;, then
a; = Qjy1 = ... = Qi1p—1 and thus we have

i+p—1

Z aj = pa; =0
j=i
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in G. Otherwise, let A € M,_1(G) be the (p — 1) x (p — 1) matrix all of whose entries are
1. Then per(A) = (p — 1)! # 0. Let S; := {a;,a;4p—1} for all 1 <i < p—1. Then |S;| =2
for all 1 <i < p—1. By Lemma 2.4, for any b = (by,...,b,_1) € G~ with by, ..., b,_1 being
distinct elements in G \ {—ag,_1} there exists u = (uq, ..., up—1) € Sy X ... X S,_1 such that
if v =uA = (v1,...,vp_1), then

p—1
Uj = E U; 7é bj
i=1

for all 1 < 7 < p— 1. Hence we must have

p—1
g U; = —Q2p—1-
i=1

This completes the proof of Proposition 1.4.

4. CONCLUDING REMARKS

The original proof of Proposition 1.4 is completely elementary. It relies on the following
lemma [2] which can be proved by induction.

Lemma 4.1. Let p > 2 be an odd prime and A a sequence of elements of Z/pZ of length
2 < s < p. Suppose further that not all elements of A are equal. Then the set

{Zeaa: each ¢, € {0, 1}} C Z/pZ

acA
has cardinality at least s + 1.

We now describe how Proposition 1.4 follows from Lemma 4.1. The case p = 2 is trivial.
Let p > 2 be an odd prime and let A = {a;}:*]" be any sequence of elements in Z/pZ
of length 2p — 1. As in Section 3, we may suppose that 0 < a7 < ... < a3, ; < p and
that a; # aj4p—1 forall 1 < i <p. If 3%  a; = 0, then we are done. Suppose now that

P a; #0. Let b := aj4p — a4 #0foreach 1 <i<p—1. If b = .. =by,q =b, then
there exists a positive integer 1 < k < p — 1 such that

k= —b_l zp:ai
i=1

holds in Z/pZ. Taking ¢; = ... = ¢, = 1 and €341 = ... = ¢, = 0 we find that

p p—1 P
ZaljtZezbl =b (b_lz(lz—f—k') = 0.
i=1 i=1 i=1

Otherwise, Lemma 4.1 applied to the sequence {bi}f;ll implies that there exist €y, ...,€,-1 €
{0,1} such that

p

p—1
E Eibi = — E a;.
i=1 =1
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In either case, we conclude that there exist €y, ...,€,—1 € {0, 1} such that

j4 p—1
Zai +Z€sz =0.
i=1 i=1
After cancellation, the left-hand side is a sum of precisely p elements of A with distinct
indices. This proves Proposition 1.4.

There is also a 2-dimensional counterpart of Theorem 1.1 due to Reiher [3] which states
that any set S of 4n — 3 planar lattice points contains a subset S’ of cardinality n such that
the centroid of all points from S’ is also a lattice point. This was conjectured in 1983 by
Kemnitz and was proved in 2003 by Reiher using the following theorem of Chevalley and
Warning (see [4]).

Theorem 4.2. Let F, be a finite field and let P, ..., P, € Flxy,...,x,] be m polynomials
such that > 7" deg Py < n. If Py, ..., Py, share a common zero, then P, ..., Py, have another
common zero.

As a matter of fact, the Chevalley-Warning theorem can be derived easily from Theorem
2.3 (see [1, Theorem 3.1]). More generally, let f(n,d) denote the least positive integer f
such that any set S of f lattice points in R? contains a subset S’ of cardinality n whose
centroid is also a lattice point. Then f(n,1) =2n —1 and f(n,2) = 4n — 3. The problem of
determining f(n,d) for d > 3 is still open.
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